DEGENERATE THERMAL IGNITION OF GASEOQOUS
SUSPENSIONS
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Study has been made of the effect of a reduction of the heat of reaction per unit mass on the
critical conditions for ignition of a gaseous suspension. Calculations are presented to show
the relation between critical ignition temperature and the particle diameter and concentra-
tion.

1. In earlier discussions of ignition in gaseous suspension [1-5], the heat of reaction per unit mass
of suspension was assumed to be so high that y=vy,/B« 1, (y, :CRTOZ/ Eq, C is the heat capacity of the
particle material; g, the heat of reaction per unit particle mass; T,, the initial temperature; B, the mass
particle concentration; E, the activation energy; and R, the molar gas constant). In many of the reported
experiments, however, the mass particle concentration was so low that the parameter v must have been
comparable to unity in value.

The parameter v relates to the heat of reaction of the gaseous suspension and is the analog of the
vp appearing in homogeneous thermal explosion theory {6, 7]. It has become customary to refer to thermal
explosion at low vy, values as "degenerate" [6, 8]. Specifically, a degenerate homogeneous thermal explo-
sion is one in which burn-out during the induction period has become a factor of importance, reaction be-
coming weakly autocatalytic with rising temperature and the critical ignition limit disappearing with an in~
crease in yy.

Thermal ignition of the gaseous suspension at higher v values will also be designated as degenerate.
Ignition degeneracy in such two-phase systems differs quantitatively from ignition degeneracy in homoge-
neous systems. For example, under conditions such that ignition of the individual isolated particle re-
mains nondegenerate (y; <« 1), the critical limit for suspension ignition will not disappear as the particle
mass concentration is reduced and the value of the parameter y brought closer to unity. In view of the
role of critical burning in nondegenerate ignition theory [2, 3], component combustion can be expected to
have a pronounced effect on degenerate ignition in the gaseous suspension.

Certain aspects of degenerate thermal ignition of gaseous suspensions will be treated in the present
paper, the results obtained being checked against the experimental data of [9].

We will consider ignition in an enclosed suspension, assuming the gas temperature uniform through-
out and the heat loss proportional to the temperature difference between gas and container walls.

For the case of identical particles uniformly distributed throughout the container, the following equa-
tions describe the isolated particle warm-up, the thermal energy balance in the gas, and the rate of par-
ticle combustion:
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Here, T, Tg, and Ty are the temperatures of particle, gas, and container wall, respectively; Tx is a
scale temperature, to be defined below; Ty and Tg are initial temperatures of particle and gas, respec-
tively; t is the time; ry and r are the initial and current radii of the particle reacting surface; B is the
mass particle concentration in the suspension; Ag is the coefficient of thermal conduction of the gas; C and
Cg are the respective specific heat capacities of particle and gas; p, py, and pgare the densities of par-
ticle, oxides, and gas, respectively; q is the heat of reaction per unit mass of condensed particle material;
E is the activation energy; a, is the oxidizer concentration in the gaseous phase; R is the molar gas con-
stant; m is the reaction order with respect to the oxidizer; v is the ratio of mass of oxidizer to mass of
particle in the stoichiometric suspension; Nu and Nuy are the respective Nusselt numbers for particle—
gas and suspension—container wall heat exchange; L and V are the characteristic dimension and volume
of the container; T is the heat-transfer surface area of the container; N is the number of particles per
unit volume of suspension; and s and s, are given by s=v, s;=[(1+) {(p/pg)—1] and s=—1, s;=—1 for the
condensed and gaseous reaction products cases. .

The first term on the right side of Eq. (1.1) describes the rate of liberation of heat on the particle
surface; this same term also appears in the expression for the rate of particle burning. The second term
on the right of Eq. (1.2) describes the rate at which heat builds up in the gas as a result of mass transfer
between particles and gas. The remaining terms of this equation describe particle—gas and suspension—
container wall heat exchange. The form of the kinetic function in Eq. (1.4) is such as to allow for oxidizer
combustion and alteration in the reacting surface area of the particle.

In setting up the expression for the particle—gas thermal energy flux [second term of Eq. (1.1)], ac-
count was taken of the fact that the heat-transfer coefficient is inversely proportional to the particle di-
ameter, and the heat-transfer surface area, directly proportional to the second power of this diameter.

The discussion that follows will center around three limiting forms of kinetic function, namely,
- 2/, 'y B #
o= = (=), cps“*“(i"'%r_—gﬂ)l (1.6)
@, applying when the oxidizer is present in excess and v B/ a, (1 — B) <1, ¢, applying to the stoichiomet-
ric mixture with vB/ay(1—B) =1, and ¢, applying when there is an oxidizer deficiency and vB/ay(1 —B) > 1,
This last case can be formally reduced to that in which the oxidizer is present in excess by making the
change in variable n' =nu B/a,(1—B) and replacing the parameter y by y' =yvB/ay(1-B).

2. Let us now investigate critical ignition effects in the gaseous suspension. The possibility of such
effects arises from the interaction of heat loss from suspension to container walls and burning of the lim-
iting component, particles or oxidizer, as the case may be. Nondegenerate critical ignition (y <« 1) has al-
ready been discussed in [2~5].

Here the effect of the parameter y on the gaseous suspension ignition limit was first studied through
numerical integration of the system of equations (1.1)-(1.5), assuming reaction with an excess oxidizer to
form condensed reaction products and identity of initial temperatures of suspension and walls (g, =fgo =
8w =0). The results of these calculations are shown in Fig. 1, where the critical value of the parameter »
has been plotted as a function of A and v with 8=0: %e =1e(A, ). Curve 1 applies to the case in which no
allowance for the effect of burning was made in calculating the heat loss (y,=0) [2]

x, = 1/(1 + A) e (2.1)
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while curves 2-7 apply to the overall critical effect {y,=0.016)
at various concentrations: 2} B=0.32, y=0.05; 3) B=0.08,
y=0.2; 4) B=0.0532, y=0.3; 5) B=0.0318, ¥=0.503; 6) B=
0.0228, y=0.7; 7) B=0.016, y=1.

The line segments 8-11 show the positiong assumed by
curves 3-6 in the limit as A-—~«. Curves 2-7 converge to a
single point at A=0 thus marking out critical ignition condi-
tions for the isolated particle, account being taken of burhing
(ys= 0). The effect of burning on isolated particle ignition has
been treated in [6], where the shift in critical conditions re~
sulting from this factor has been calculated through the equa-
tion

N == —;[1 +2.7<—i-*{0>%3} (2.2)

3 ] AW
Fig. 1 An increase in the parameter A reduces wg, which then
asymptotically approaches the value i fixed by v; in this
range of A values, ignition is limited by critical particle burning, a factor independent of the heat transfer
out of the system [2, 3]. The ratio w;/w,(y,)) has been plotted as a function of v in Fig. 2 (curve 1). With
an increase in v, the critical conditions for gaseous suspension ignition asymptotically approach the criti-
cal conditions for isolated particle ignition, remaining, however, clearly expressed at all values of v. In
distinction to the case of the gaseous suspension, passage into the degenerate thermal explosion region
leads to a disappearance of critical ignition effects in homogeneous gaseous and condensed systems [8].

The results of calculations on the critical ignition effect wg=uc(A, y) could be satisfactorily re-
produced by the approximation equation

o = 2, (Y) -+ Ko — % (D) g (2.3)

Using this equation, it was possible to mark out a region of parameter values over which the critical
effect and induction period are only weakly dependent on the heat loss. The gaseous suspension can be
considered adiabatic when the conditions are such that

>3 Ity — 2 ()1 (1 + A) (2.4)

In determining the form of the »; (y) function, use was made of the fact that preexplosion warm-up
of the gaseous suspension is a quasistationary process [3], the particle—gas thermal equilibrium being
displaced toward the particle side as a result of gas heating and an alteration in the rate of evolution of
thermal energy. If the derivative term in the expression for particle warm-up, (1.1), is neglected, an al-
gebraic equation of the form F(g, fg, 1) =0 results. When the condition of (2.4) is satisfied, heat loss through
the container walls has no longer any effect on ignition, and the system of equations (1.1)~(1.3) reduces to
a total energy balance equation for the gaseous suspension,

BO (1 —B)0, =n/y —sBn(8 — 8)

The nonlinear term sBy (Q—Bg) in the total energy balance equation can be neglected, since it will be
small in comparison with the other terms if the conditions are such that sBy = 8Y, <« 1; and this is gener-
ally the case, v, being much less than unity insystems capable of ignition. We will now set up the Fg,

Og: n) =0 equation for the case of condensed reaction products, neglecting the alteration in particle diam-
eter resulting from oxidation and the difference in particle and oxide densities (e.g., for magnesium par-
ticles with s;=—=0.2, complete oxidation reduces the particle diameter by some 7%).

By solving the two simplified transcendental algebraic equations, a guasistationary relation between
the extent of particle burning n and the particle temperature is obtained;

n=1—9y[y'—08|¥ (U, K) (2.5

The K parameter of this last equation describes the reaction conditions: K=2/3, for the case of ex~
cess of oxidizer and condensed reaction products; K:1/3, for the case of excess of oxidizer and gaseous
reaction products; K=2/3+m, for the case of stoichiometric proportions, particles to oxidizer, and con-
densed products; K:1/3+m, for the case of stoichiometric proportions, particles to oxidizer, and gaseous
products; and K=m, for the case of oxidizer insufficiency.
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The function ¥(U, K) is to satisfy the equation

WS ¥k =1 =0 (2.6)

the upper sign applying when <y~ and the lower, when g>y~ L

Calculations based on the equation system (1.1)-(1.5) show the integral curve n{g(7)] to be essentially
identical with the curve of Eq. (2.5) as long as it is possible for a quasistationary particle—gas thermal
equilibrium to be maintained; beyond this point the difference between the temperatures of the two phases
changes discontinuously and the particles in the suspension ignite. This point is reached in the neighbor-
hood of that temperature 4, at which Eq. (2.5) no longer can be solved for 9. The value of g, is obtained
from the equation dg/dn =, or its equivalent dn/dg=0.

yl— 8, = @ (z, K) (2.7
The function &(z, K) satisfies the transcendental equation
2= — oLy -1 —K { K—%s 7
Klnl_(lx ; > cp] rl A)ln[l e (2.8)

Particle ignition at temperatures in excess of g, will initiate an autocatalytic reaction, regardless of
how small the heat of reaction per unit mass of suspension may be. The situation here is markedly differ-
ent from that met in homogeneous systems, where a reduction in the heat of reaction abruptly quenches
the autocatalytic reaction [8].

Gaseous suspension particle ignition occurs at those values of the parameters z and K for which Eqg.
(2.8) has a solution, a condition which cannot be met at critical values of the burning rate.

It is also true that (2.8) does not have a solution when the conditions are such that d® /dz = «, the
function & then satisfying an equation of the form

(D, — Yl 1@ + K + Yl = (1 — K) (s — K) | ®; [@; + (K —?3)] (2.9)
®; being the value of & at the critical burning rate.

The value of ®; obtained from Eqg. (2.9) can be substituted into (2.8}, and the parameter z given the
value zj, to obtain a relation between the parameters values at the critical burning rate, namely,

ln’—“’—x(_(—‘) ="' —K)+ KIn(yK) —In{f(K)] - In(1 — B) (2.10)
B . @, D, —(K—%) | (1—K)(K—)K
J) = expl0; 41— K)ot [ U200 (o0t

%,(0) being the critical value of » for the isolated particle with no allowance for burning effects (y,=0),
and ,(0) =e~l, With y« 1, the critical conditions of (2.10) for burning pass over the critical conditions
for nondegenerate thermal ignition, the relation then becoming identical with that obtained earlier in [2, 3].

Computations show that preexplosion warm-up begins with an essentially nonstationary particle heat-
ing, and then passes over into a quasistationary stage, where the greater part of the particle burning is
concentrated. The derivation of Eq. (2.10) considered only this second, quasistationary stage, neglecting
particle burning in the first stage, and it is for this reason that the equation itself contains the parameter

olyy) at y,=0.

Let usnow consider in moredetail the condensed reaction products case with s=p, K=%. For this

value of K, Egs. (2.7) and (2.9) have the solutions 6,=y~*+Y, &; = =%, and f(K) is equal to unity. Curve 2
of Fig. 2 shows the 1j/#;(0) ratio plotted as a function of the parameter v at K= 2/3 Although the approxi-
mation to critical ignition conditions for the gaseous suspension given by Eq. (2.10) for 723/2 is identical
with the critical ignition conditions for the isolated particle, numerical computations {curve 1, Fig. 2) in~
dicate that there should be an asymtotic approach of the one set of conditions to the other. To a consider-
able degree of accuracy it could be considered that that there is essentially no departure from wy(7y,) in
calculations at y =%, w;.

We will now attempt to find the effect on the extent of burning of departures from the critical burn-
ing rate. Equations (2.5) and (2.6) can be drawn on to show that at §,, the temperature of cut~off from
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TABLE 1 the quasistationary state,  should satisfy the equa~
N tion

No. 1 2 3 4 5 6 7 8 Y S,

B 40s 77T 42 12 15 15 55 55 =6 (2.11)
To-108 2:?4 gg 2'34 ;? 2'23 ;ig 2'24 3':’)8 By substituting {2.11) into (2.5), one obtains an
Y 0.43 0.10 0.60 048 4.12 0.27 0.54 040 expression for the extent of particle burning at the

A 5.55 13.8 1.28 3.12 0.42 1.45 0.06 0.34 instant of ignition (n,),
%zo/xo ® 0.45 ¢’ 0.67 0.04 0.95 0.16 0.6 e
Teg, °C 875 875 810 810 775 775 650 650 M =7y (0, — 1) (2.12)
Te, °C 87 572 772 647 15T 677 G4l 622
To(r==0 872 572 71T 637 732 872 637 622 9, being calculated by substituting the solution of
Te(d=oco) 767 377 752 427 757 602 607 302 (2.8) ®(z, %) into Eq. {(2.7). The extent of particle
burning at the critical burning rate, 7;, is obtained

from Eq. (2.12) by setting

Me=1—27 (2.13)

This last relation shows that the gaseous suspension can be ignited only if the degree of burning is
less than n;(y). If the degree of burning inpreexplosion warm-up exceeds 1 (y), the gaseous suspension
will not ignite under further heating. Equation (2.13) is valid for cases such that 'y<3/2, i.e., for cases in
which there is still a difference between critical ignition conditions for gaseous suspension and isolated
particle; when y> 3/2, one should consider that 7; =0 in the quasistationary approximation. Computations
show that n; approaches the degree of burning of the isolated particle under critical conditions ny{y,) [6]

Ny (o) = 2.7 (po* / 2l5)'"s (2.14)

the latter value proving to be low under any realistic assumptions concerning the parameter v, (when v, =
0.016, n5{yy) = 0.2).

A relation between the degree of particle burning and departure from the ignition limit measured by
1. developed from the approximation equation (2.12), gave results which were in satisfactory agreement
with values obtained from computations based on the system of equations (1.1)-(1.5). Increasing the value
of the parameter » from »; =0.0025 to 0.0425 at y=0.117 reduced the degree of particle burning, the re-
duction being from 0.922 to 0.4, according to the computations based on (1.1)-(1.5), and from 0.922 to 0.32,
according to the approximation equation.

3. We will now illustrate the type of relation between the critical ignition temperature T, and the
particle size and concentration, which follows from the equations presented above. The heat of reaction
and the particle heat capacity will be set at 6 kcal /g and 0.25 cal/g- deg, respectively. Application of Eq.
(2.3) requires a knowledge of the functions u(ry, Tg) and A(rg, B), (which reflect the experimental condi-
tions) and (ry, To); the latter can be obtained from the experimentally developed relation between the
critical ignition temperature (TCO) and the isolated particle diameter [9], namely,

% = 10%3 (ry/T2) exp [— 23 000 / RT,] (3.1)

The A(ryB) function was so chosen that the value of A for particles 55 p in diameter would be less
than unity at all concentrations

B
=0 L
A=310 FA=F) 3.2)
Figure 3 shows the relation between particle concentration and the critical ignition temperature of
the gaseous suspension for particles of various diameters. Curves I~V correspond to the particle diam-
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eters I) 7, ) 12, ) 15, IV) 35, V) 55 p. The numbers 1-8 designate points at which values of T¢ (y = 0)
and T¢ (A= «), critical suspension ignition temperatures uncorrected, respectively, for particle burning
and thermal loss, were calculated; these values are shown in Table 1.

It is seen from the table that the critical ignition temperature was determined by burning at points
1, 3, and 5 and by heat loss to the reactor walls at points 2, 4, 6, 7, and 8. On curves I, II, and IIT 3 re-
duction in concentration at fixed particle diameter results in passage into the region of degenerate ignition;
v increases, T approaches Toc, and the effect of burning on the critical ignition temperature hegins to
predominate over that of heat loss (cf. Table 1).

Comparison shows general agreement between the theoretical T (ry, B) relation of Fig. 3 and the
experimental results reported in [9], though the experimentally developed curves are displaced with re-
spect to the theoretical by a 1:6 scale factor on the concentration axis. The fact that the working condi-
tions for the experiments of [9] were not fully specified makes for difficulty in comparing theoretical and
experimental results. ‘
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